2 research outputs found

    Lifted coordinate descent for learning with trace-norm regularization

    Get PDF
    International audienceWe consider the minimization of a smooth loss with trace-norm regularization, which is a natural objective in multi-class and multi-task learning. Even though the problem is convex, existing approaches rely on optimizing a non-convex variational bound, which is not guaranteed to converge, or repeatedly perform singular-value decomposition, which prevents scaling beyond moderate matrix sizes. We lift the non-smooth convex problem into an infinitely dimensional smooth problem and apply coordinate descent to solve it. We prove that our approach converges to the optimum, and is competitive or outperforms state of the art

    Large-scale image classification with trace-norm regularization

    Get PDF
    International audienceWith the advent of larger image classification datasets such as ImageNet, designing scalable and efficient multi-class classification algorithms is now an important challenge. We introduce a new scalable learning algorithm for large-scale multi-class image classification, based on the multinomial logistic loss and the trace-norm regularization penalty. Reframing the challenging non-smooth optimization problem into a surrogate infinite-dimensional optimization problem with a regular l1 -regularization penalty, we propose a simple and provably efficient accelerated coordinate descent algorithm. Furthermore, we show how to perform efficient matrix computations in the compressed domain for quantized dense visual features, scaling up to 100,000s examples, 1,000s-dimensional features, and 100s of categories. Promising experimental results on the "Fungus", "Ungulate", and "Vehicles" subsets of ImageNet are presented, where we show that our approach performs significantly better than state-of-the-art approaches for Fisher vectors with 16 Gaussians
    corecore